DEPARTMENT OF MATHEMATICS

Department has been running under-graduate (UG) programme since 1992.

UG is a three year programme, the syllabus of the programme are set by Gondwana University, Gadchiroli. After successful completion of these programmes students should be able to-

be able to-		
Ţ	UNDER-GRADUATE	
Odd-Semesters (Sem-I, III & V)		
	SEMESTER-I	
Course	Expected Outcomes	
USMT-01	1. To verify the limit of function using \in and δ	
Paper I –	definition. To know the continuity and types of	
Differential and Integral	discontinuity and also successive differentiation.	
Calculus	2. To know the Mean Value Theorems which	
	provides the values of the function in terms of	
	derivatives.	
	3. To know the improper integral Gamma function, Beta function and also indeterminate forms.	
	4. To know about Double integration.	
USMT-02	To know about Double integration. To verify the limit of function of two variables	
Paper II –	using the definition of limit. Solve the problems	
Differential Calculus and	on partial differential, differential and chain rule.	
Trignometry	2. To identify Homogeneous functions. To verify	
· ·	the Euler's theorem and also to know about the	
	solutions of problems on Jacobian, maxima &	
	minima, Lagrange's Multiplier method and	
	Taylor's theorem for function of two variables.	
	3. To know the concepts of Tangent & normal,	
	curvature asymptotes singular points, tracing of	
	curve, parametric representation of curve and tracing of curve in cartesian form.	
	4. To know the concept of De Moivre's theorem to	
	solve the problems and its application, square	
	root of complex number, inverse circular &	
	hyperbolic functions, logarithm of complex	
	quantity, summation of series.	
	C+iS Method.	
COLIDGE	SEMESTER-III	
USMT-05	EXPECTED OUTCOME	
Paper-V	1. To know, the sequence of real numbers and their convergence and divergence.	
Real Analysis	2. To know, the infinite series and their	
Alouz Lainui y Did	convergence by using various tests.	
	3. To know, the metric, neighbourhood, closed sets,	
	open sets, bounded sets, De Morgan's law,	
	metric space, open sphere, closed sphere and	
	Cauchy sequence.	

	4. To know and understand the Riemann integral.
USMT-06	To know about different sets and Relations.
Paper-VI	2. To know the concepts of Fuzzy sets and
Set Theory and Laplace	operation on Fuzzy sets.
Transform	3. To know the Laplace transform, its properties
Transform	and derivatives and integrals.
	4. To know the inverse Laplace transform,
	convolution theorem and the solution of ordinary
	and partial differential equation.
	SEMESTER-V
DISCIPLIN	NE SPECIFIC ELECTIVES (DSE)
DSE-I	1. To know Vector space, subspace, quotient space,
	linear span, basis and dimension.
Linear Algebra	2. To know and understand the linear
	transformation, matrix and linear
	transformation, Rank Nullity theorem of matrix
	and isomorphism.
	3. To know about dual space, adjoint of linear
	transformation, Eigen values and Eigen vectors
	of a linear transform.
	4. To know and understand the inner product space.
DSE-IV	1. To know the Newtonian mechanics, Inertial
Special Relativity-I	Systems, Galilean transformations, Newtonian
	relativity, Conservation laws in Newtonian
	mechanics, Maxwell's electromagnetic theory,
	Michelson-Morley experiment and Lorentz
	Fitzgerald contraction hypothesis.
	2. To know Einstein's special theory of relativity,
	its postulates. Also, Lorentz transformation, its
	geometrical interpretation and group properties.
	To know and understand length contraction and
	time dilation.
	3. To know and understand Relativistics
	Kinematics.
	4. To know Four dimensional Minkowskian space-
	time of special relativity, Time like, Light-like
	and space-like intervals, Lorentz transformation
	in index form,
	proper time, world line of a particle, Four vectors
	and Four tensor in Minkowskian space-time.
	SEMESTER-V
	HANCEMENT COURSE (SEC)
SEC-II	1. To know and understand the Mathematical
MATHEMATICAL	Modeling.
MODELING	2. To know the need of Mathematical Modeling, its
	principle, examples and limitation.
	3. To know and understand the application of
	Differential equation in Mathematical Modeling.

	4. To know and understand the application of traffic flow, vibrating string, gravitational		
	potential and conservation laws.		
Even-Semesters (Sem-II, IV & VI)			
Course	Expected outcome		
USMT-03	1. To know the method of solving first order exact		
Paper-I	differential equation, linear equation,		
Ordinary Differential	Bernoulli's equation, first order higher degree		
Equations and Difference	equations and orthogonal trajectory.		
Equation	2. To know the method of solving simultaneous		
	differential equations.		
	3. To know the method of solving linear equation		
	with variable coefficient, Cauchy's Euler's		
	homogeneous linear differential equation and		
	method of variation by parameters. 4. To know the Difference equation, method of		
	solving homogeneous linear equation with		
	constant coefficient and non homogeneous		
	linear equation. method of solving linear		
	equation.		
USMT-04	1. To know the formation of partial differential		
Paper-II	equation. Method of solving linear partial		
Partial Differential Equation	differential equation of first order and		
	Lagrange's linear partial differential equation.		
	2. To know compatible differential equations,		
	nonlinear partial differential equations and Charpit's method.		
	3. To know the method of solving homogeneous		
	partial differential equation and Jacobbi's		
	method.		
	4. To know the method of solving non		
	homogeneous linear partial differential equation		
	and equation reducible to linear partial		
	differential equation.		
LISMT 07	SEMESTER-II 1. To know and understand group, its proportion		
USMT-07 Paper-I	1. To know and understand group, its properties, subgroups, cyclic groups and permutations.		
Algebra	2. To know and understand cosets and normal		
12-9-02-4	subgroup.		
	3. To know and understand homomorphism and		
	non homomorphism group.		
	4. To know and understand Ring, Integral domain		
	and Field.		
USMT-08	1. To know divisibility, division algorithm,		
Paper-II	Euclidean algorithm, gcd and lcm.		
Elementary Number Theory	2. To know and understand prime numbers,		
	Fundamental theorem of arithmetic, Fermat's numbers and linear Diphantine equation.		
	numbers and inical Diphantine equation.		

	3. To know and understand congruence and
	Chinese remainder theorem and Goldbach
	conjucture.
	4. To know and understand arithmetic function,
	Euler's theorem, Mobius functions and
	Pythagorean triplets.
S	EMESTER-VI
	NE SPECIFIC ELECTIVES (DSE)
	, ,
DSE-VI	1. To know and understand Analytic function,
Complex Analysis and Vector	Cauchy Riemann equation, Harmonic function,
Calculus	Mobius trasformation and cross ratio.
	2. To know Complex integration, Cauchy integral
	Theorem and formula, Singularity and Residue
	theorem.
	3. To know Vector differentiation and integration.
	4. To know Green, Gauss and Stokes Theorems.
DSE-VIII	1. To know Tensor Analysis.
Special Relativity-II	2. To know Christoffels symbols, its
	transformation, covariant and absolute
	derivative, Geodesics, Curvature, Ricci, Einstein
	tensor and the Banachi identity. 3. To know and understand Relativistic Mechanics.
	4. To know and understand Electromagnetism.
	SEMESTER-VI
SKILL ENH	IANCEMENT COURSE (SEC)
SEC-III	1. To know the basic concepts of Graph Theory,
Graph Theory	undirected and directed graphs.
F V	2. To know the multiple graphs, path and circuit,
	shortest path, Eulerian path and circuit.
	3. Travelling Salesman problems and planar graph.
	4. Dijkstra's algorithm and Floyd-Warshall
	algorithm.