TAXONOMY AND DIVERSITY OF GENUS TETRAEDRON KÜTZING (CHLOROPHYCEAE) IN THE MAJOR RIVERS OF CHANDRAPUR DISTRICT, MAHARASHTRA

Mallesh Reddy
Department of Botany, Shree Shivaji Arts, Commerce \& Science College, Rajura, MS, India.

Abstract

: The genus Tetraedron belongs to family Hydrodictyaceae of class Chlorophyceae. The plants are microscopic, unicellular, free floating, flat or twisted, triangular, quadrangular or polygonal in shape. Present study is carried out in Chandrapur district to find out the diversity of the genus Tetraedron in major rivers of the district. During this study total 13 taxa have been isolated, identified and classified. Among these, three taxa are reported first time from the Maharashtra state.

Key words: Hydrodictyaceae, Microscopic, Free floating, Unicellular, Triangular.

Introduction:

India is one of the mega-biodiversity hotspots of the world, having vast variety of flora and fauna. It is a habitat for threatened and endemic species that have immense ecological and commercial value. Algae are one of the most diverse groups of living organism that are distributed in all across the soil and water. They are highly diversified in distribution in India. They are of great importance both economically as well as ecologically. Hence, it is very necessary to document each and every species along with its distribution throughout the country.

Phycologists explored the different habitats of the country and documentedvarious species. But, still the Chandrapur district is not properly explored for its algal phyto diversity. Only few studies related with taxonomy are available from the district[1-5]. On the other hand there exist few wetlands in the district and that too are bearing the pressure of high industrialization. Day by day pollution in the district is increasing and changing the physico chemical environment of the rivers. So, a thorough investigation of algal flora of the district has become an urgent necessity.
The Tetraedron Kützing is a green algae genus belongs to family Hydrodictyaceae, order Chlorocaccales and class Chlorophyceae. The plants are microscopic, unicellular, free floating, flat or twisted, triangular, quadrangular or polygonal in shape. Angles of the cells are simple with or without spines. The different species are distinguished on the basis of shape, size and spines.
Chlorococcales are most common green algae and are studied by various workers from the Maharashtra state [6-11]. Recently 17 species of Tetraedron from have been reported from Beed district of the Maharashtra state[12]. But from Chandrapur district, no reports are available regarding the taxonomy of the genus Tetraedron. So, present work is undertaken to study the taxonomy and diversity of the genus TetraedronfromChandrapur district.

Material and Method:

Present manuscript is a part of Taxonomic study of micro and macro flora of major rivers of Chandrapur district project. Chandrapur is the easternmost district of the Maharashtra
state, located between $18^{\circ} 41^{\prime}$ to $20^{\circ} 50^{\prime}$ north latitudes and $78^{\circ} 48^{\prime}$ to $80^{\circ} 55^{\prime}$ east longitudes (fig. 1). The work is carried out for two consecutive years between 2013 and 2015. During this work, water samples were collected from 21 sites of three major rivers of the Chandrapur district (fig. 2). The samples were collected seasonally from every site between 8 to 10am. Sampling was done with the help of phytoplankton net made up of bolting silk and having pore size 20μ. The samples were preserved in 4% formaldehyde solution and microphotographs were taken with Coslab microscope camera. Plants were identified with the helpof standard books, floras, monographs and recent research papers [13-17].

Fig. 1. Location of Chandrapur district.

Fig. 2. Sampling sites on major rivers.

Systematic enumeration:

The total taxa available during the study are classified as follows...
1a. Cells without spines 2
1b. Cells with spines 6
2a. Cells triangular 3
2b. Cells quadrangular or pentangular 4
3a. Tips with knob like projection T. triangulare
3b. Tips without projection
T. trilobulatum
4a. Cells quadrangular 5
4b. Cells pentangular
5a. Sides slightly concave, not lobed
T. simmeri var. minus
T. minimum
5b. Sides markedly concave, lobes definite T. minimum var. tetralobulatum
6a. Angles with single spine
6b. Angles with two spines each
7a. Cells triangular7
T. bifurcatum var. minor
7b. Cells quadrangular or pentangular 98

8a. Sides concave, spine long

T. trigonum

8b. Sides markedly convex, spines short
9a. Cells quadrangular
9 b . Cells pentangular
10a. Cells regular
10b. Cells irregular
11a. All angles in same plane
11b. All angles not in same plane
12a. Spines short and in same plane
T. trigonum f. crassum

10
11
T. quadratum f. minus
T. regulare

12
T. pentaedricum
T. caudatum
12b. Spines long and in different plane T. caudatum var. longispinum

1. Tetraedron bifurcatum var. minorPrescott 1944.
[Pl. I, F. 1]
[Prescott 1962, p. 263, pl. 59, f. 15, 16]
Cells tetrahedral or pyramidal. Margins slightly concave to convex. Ends rounded and provided with two straight spines from each end.
Size: Cells $15 \mu-20 \mu$ in diameter; Spine: up to 8μ long.Occurrence: S4-S6, S11-S14
2. Tetraedron caudatum (Corda) Hansgirg 1888.
[Pl. I, F. 2]
Basionym: Asteriscium caudatum Corda 1839.
[Korshikov 1953, p.239, f.181; Prescott 1962, p. 263, pl.59, f.17, 24, 25; Philipose 1967, p.150, f.64]

Cells five lobed, flat and elongated. Margins either similarly or dissimilarly slightly concave, ends rounded and provided with a short spine.
Size: Cells $6 \mu-15 \mu$ in diameter; Spine: up to 4μ long.Occurrence: S1-S6, S10-S12
3. Tetraedron caudatum var. longispinumLemmermann 1898. [Pl. I, F. 3]
[Korshikov 1953, p.240; Prescott 1962, p. 264, pl.59, f.20-22]
Cells five sided, flat and circular in outline. Margins similarly concave, ends rounded or slightly pointed and with a single, long spine. Spines are somewhat right angle to the plane of cell and oriented in different planes i. e two spines directed upward and three directed downward.
Size: Cells $11 \mu-14 \mu$ in diameter; Spine: up to 7μ long.
Occurrence: S1-S3, S5, S6, S10-S14
This is probably first report of the taxon from Maharashtra.
4. Tetraedron minimum (A.Braun) Hansgirg $1888 . \quad$ [Pl. I, F. 4]

Basionym: Polyedrium minimum A.Braun
[Korshikov 1953, p.241, f.185; Prescott 1962, p. 267, pl.60, f.12-15; Philipose 1967, p.138, f. 53 a-c]

Cell quadrangular, flat with thick cell wall. Sides slightly concave. Ends broadly rounded with knob like projection.
Size: Cells $10 \mu-20 \mu$ in diameter.Occurrence: S1-S15, S19-S21
5. Tetraedron minimum var. tetralobulatumReinsch. [PI. I, F. 5]
[Philipose 1967, p.139, f. 53 e]
Similar to type, but deeply concave and form V shaped incision that leads to form four lobe like structures.

Size: Cells $11 \mu-15 \mu$ in diameter. Occurrence: S1-S7
This is probably first report of the taxon from Maharashtra.
6. Tetraedron pentaedricum West \& G.S.West 1895. [Pl. I, F. 6\&7]
[Korshikov 1953, p.241, f.183; Prescott 1962, p. 268, pl.60, f.21-23; Philipose 1967, p.151, f. $65 \mathrm{a}, \mathrm{b}$]

Cells irregularly five lobed with four lobes in one plane and fifth one is in different plane. Margins concave, ends rounded or pointed and provided with a short spine.
Size: Cells $8 \mu-18 \mu$ in diameter; Spine: up to 5μ long;Occurrence: S1-S7, S10-S15
Note: Some individuals in the collection are found to be somewhat similar to Tetraedron caudatum but lobes oriented in different plane. In which, three lobes in one plane and two lobes angular to previous.
7. Tetraedron quadratum f. minus(Reinsch) De Toni 1889. [Pl. I, F.8]

Basionym: Polyedrium quadratum f. minus Reinsch 1888.
[Philipose 1967, p.145, f.59]
Cells quadrangular and flat. Margins straight or convex, ends rounded and provided with single short straight or curved spine.
Size: Cells $8 \mu-15 \mu$ X $11 \mu-17 \mu$; Spine: up to 4μ long;Occurrence: S1-S5, S11-S14
8. Tetraedron regulare Kützing 1845. [Pl. I, F. 9]
[Prescott 1962, p. 269, pl.60, f.24-26; Philipose 1967, p.145, f. 60 f]
Cells tetrahedral or pyramidal. Margins slightly concave, ends rounded with one straight spine from every end.
Size: Cells $15 \mu-18 \mu$ in diameter; Spine: 5μ long;Occurrence: S1-S6, S9-S11, S16-S18
9. Tetraedron simmeri var. minusPhilipose 1967. [Pl. I, F. 10]
[Philipose 1967, p.139, f.55]
Cell five angled and nearly flat. Margins slightly concave with rounded ends.
Size: Cells $13 \mu-15 \mu$ in diameter;Occurrence: S1-S3, S13-S19
This is probably first report of the taxon from Maharashtra.
10. Tetraedron triangulare Korshikov 1953. [Pl. I, F. 11]
[Korshikov 1953, p.239, f.180]
Cells triangular, flat with thick cell wall. Sides slightly concave. Ends broadly rounded with knob like projection.
Size: Cells $14 \mu-16 \mu$ in diameter; Occurrence: S19-S13, S19-S21
11. Tetraedron trigonum(Nägeli) Hansgirg $1888 . \quad$ [Pl. I, F. 13]
Basionym: Polyedrium trigonum Nägeli
[Prescott 1962, p. 270, pl.61, f.11, 12; Philipose 1967, p.142, f. 58 i]
Cell triangular, flat with thick cell wall. Margins concave, ends rounded and bear a long, stout spine.
Size: Cells $20 \mu-40 \mu$ in diameter; Spines: up to 10μ long;Occurrence: S1-S3, S13-S15
12. Tetraedron trigonum forma crassum (Reinsch) De Toni 1889.[Pl. I, F. 14 \& 15]

Basionym: Polyedrium trigonum forma crassum Reinsch 1915.
[Philipose 1967, p.142, f. 58 d-h]
Cells triangular, flat. Margins convex, ends rounded, spines short either straight or curved.
Size: Cells $13 \mu-15 \mu$ in diameter; Spine: up to 5μ long.Occurrence: S4-S6, S12-S14.

Plate I. Species diversity of the genus Tetraedron isolated from the rivers of Chandrapur
13. Tetraedron trilobulatum (Reinsch) Hansgirg 1889.
[Pl. I, F. 12]
Basionym: Polyedrium trilobulatum Reinsch 1888.
[Philipose 1967, p.137, f.50]
Cells triangular, flat with thick cell wall. Sides equal and deeply concave and form three lobes. Ends broadly rounded and without any knob like structure.
Size: Cells $10 \mu-15 \mu$ in diameter; Occurrence: S9-S14.

Conclusion:

The rivers of the district are rich in biodiversity and contain total 13 species of Tetraedron. They are present throughout the year but most abundant during November month. The isolated taxa are properly identified and classified. A species key is also provided to identify the taxa properly.

References:

1. Wadhave, N.S. 2014. Cyanophycian algal diversity of Bhadrawati tahasil paddy soil of Chandrapur district (MS) India. Int. J. of Life Sciences. Special issue A2: 112-115.
2. Reddy, B. M. and Chaturvedi, A. 2015. Scenedesmus and related genera in riverine system of Chandrapur district, Maharashtra, India. Phykos. 45(2): 19-28.
3. Reddy, B. M. and Chaturvedi, A. 2017. Desmids from rivers of Chandrapur district, Maharashtra. NeBIO 8(1): 25-34.
4. Reddy, B. M. and Chaturvedi, A. 2017. New records of fresh water Algae from India. Phykos. 47 (1): 59-63.
5. Reddy, B. M. and Chaturvedi, A. 2018. Study of Cyanobacterial diversity from the major rivers of Chandrapur district,Maharashtra. Phykos. 48 (1): 36-45.
6. Kamat, N. D. 1975. Algae of Vidarbh, Maharashtra. J. Bom. Nat. Hist. Soc. 72(2): 450-476.
7. Ashtekar, P.V. and Kamat, N.D. 1979.Chroococcales of Aurangabad district, Maharashtra. Marathwada Univ. J. Sic., 18(11): 47-52.
8. Ashtekar P V and Kamat N D 1980, Chlorococcales ofAurangabad, Maharashtra. Phykos 19(1) 115- 119.
9. Tarar, J. L. \& Bodkhe, S. 1998. Studies on Chlorococcales of Nagpur. Phykos, 37 (1 \& 2), 107-114.
10. Talekar, S. \& Jadhav, M. 2010. Chlorococcales of Manjra River in Beed district of Maharashtra. Bionano Frontier, 3 (1), 121-122.
11. Dhande, J. S. 2013. On some Chlorococcales from Hartala lake, District Jalgaon, Maharashtra. International Journal of Resent Scientific Research 4 (2), 135-138.
12. Yadav S. G. 2018. Species diversity of genus Tetraedron (Kuetzing, 1845). Asian journal of science and technology, 9(3): 7740-7742.
13. Prescott, G.W. 1962. Algae of the western Great Lakes area. Dubuque: WC Brown Company.
14. Korshikov, O. A. 1953. The Freshwater Algae of the Ukrainian SSR. V Protococcinaea: Vacuolales and Protococcales. Akad Nauk URSR, Kiev.
15. Phllipose. M.T. 1967.Chlorococcales.ICAR.Monograph, New Delhi.
16. Guiry M.D. in Guiry, M.D. \& Guiry, G.M. 2016. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.
17. Gupta, P. 2012. Algae of India, Vol. 1 Botanical Survey of India, Kolkata.
